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A FORMULATION OF THE SIMPLE THEORY OF TYPES 

ALONZO CHURCH 

The purpose of the present paper is to give a formulation of the simple theory 
of types1 which incorporates certain features of the calculus of A-conversion.' 
A complete incorporation of the calculus of A-conversion into the theory of 
types is impossible if we require that  Ax and juxtaposition shall retain their 
respective meanings as an abstraction operator and as denoting the application 
of function to  argument. But  the present partial incorporation has certain 
advantages from the point of view of type theory and is offered as being of 
interest on this basis (whatever may be thought of the finally satisfactory 
character of the theory of types as a foundation for logic and mathematics). 

For features of the formulation which are not irnmediately connected with 
the incorporation of A-conversion, we are heavily indebted to Whitehead and 
uss sell,^ Hilbert and ~ c k e r m a n n , '  Hilbert and ~ e r n a y s , '  and to forerunners of 
these, as the reader familiar with the works in question will recognize. 

1. The hierarchy of types. The class of type symbols is described by the rules 
that  L and o are each type symbols and that  if a and B are type symbols then 
(ap) is a type symbol: it is the !east class of symbols which contains the symbols 
L and o and is closed under the operation of forming the symbol (cub) from the 
symbols a and 8.  

As exemplified in the statement just made, we shall use the Greek letters 
a, p, 7 to represent variable or undetermined type symbols. \Ye shall abbreviate 
type symbols by omission of parentheses with the conven+,ion that  association 
is to the left -so that ,  for instance, or nil1 be an abbreviation for (oc), c t r  for 
((LL),) ,  LL(LL) etc.for ( (LL)(LL)) ,  Jlorcover, ive shall use a' as an abbreviation 
for ((acu)(aa)), a'' as an abbreviation for ( (a ' a f ) (a fa f ) ) ,  etc. 

The type symbols enter our formal theory only as subscripts upon variables 
and constants. In the interpretation of the theory it is intended that  the 

Received March 23, 1943. 
1 See Rudolf Cnrnap, Abriss der Logistik, Vienna 1920, 59. (The simple theory of types 

was suggested as a modification of Russell's ramified theory of types by Leon Chwistek 
in 1921 and 1022 and by F. P. Ramsey in 1026.) 

See, for example, Alonzo Church, Mathematical logic (mimeographed), Princeton, 
N. J . ,  1936, and The calculi of lambda-conversion, forthcoming monograph. 

a Bertrand Russell. .lfalhernalical logic as  based o n  the theory o j  t ypes ,  American journal 
of mathematics, vol. 30 (1908), pp. 222-262; -4lfred S o r t h  Whitehead and Bertrand Russell, 
Principia mathematics, vol. 1, Cambridge, England, I010 (second edition 1925), vol. 2, 
Cambridge, England, 1912 (second edition 1927), and vol. 3, Cambridge, England, 1913 
(second edition 1027). 

D. Hilbert and W .  Xckermann, Grundziige der theoretischen Logik, Berlin 1928 (second 
edition 1938). 

6 D. Hilbert and P. Bernays, Grundlagen der Mathematik, vol. 1, Berlin 1934, and vol. 2, 
Berlin 1939. 
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57 A FORMULATION OF THE SIMPI,E THEORY OF TYPES 

subscript shall indicate the type of the variable or constant, o being the type of 
propositions, L the type of indiviclunls, ,znd (orb) the type of functions of one 
variable for which the range of the independent variable comprises the type P 
and the range of the depelidcnt variable is contained in the type a. Functions 
of several variables are explained, after ~chiinfinltel,~ as functions of one variable 
whose values are functions, and propositional functions are regarded simply as 
functions whose values arc propositions. Thus, e.g., O L L  is the type of proposi- 
tional functions of two individual variables. 

We purposely refrain from making more definite the nature of the types o 
and L, the formal theory admitting of a variety of interpretations in this regard. 
Of course the matter of interpretation is in any case irrelevant to the abstract 
construction of the theory, and indeed other and quite different interpretations 
are possible (formal consistency assumed). 

2. Well-formed formulas. The primitive symbols are given in the following 
infinite list : 

X, (, ), No,, A,,, no(,,),La(,,), a,, be, . . - 1  z,, a,, ha1 . 

Of these, the first three are improper symbols, and the others are proper symbols. 
Of the proper symbols, No,, A,,,, I'I,(,,,, and taco,) are constants, and the re- 
mainder are variables. 

(The inclusion of II,(,,) in this list of primitive symbols is meant in this sense, 
that, if a is any type symbol, rI,(,,, is a primitive symbol, a proper symbol, and 
a constant; similarly in the case of L,(,,), a,, etc.) 

Any finite sequence of primitive symbols is a formula. Certain formulas are 
distinguished as being wcll-formed and as having a certain type, in accordance 
with the following rules: (1) a formula consisting of a single proper symbol is 
well-formed and has the type indicated by the subscript; (2) if xp is a variable 
with subscript /3 and M, is a well-formed formula of type a, then (XX~M,) is a 
well-formed formula having the type (YP;  (3) if F,p and Ap are well-formed 
formulas of types ap and 8 respectively, then (FaBAp) is a well-formed formula 
having the type a. The well-formed formulas are the least class of formulas 
which these rules allow, and the type of a well-formed formula is that determined 
(uniquely) by the& rules. An occurrence of a variable x~ in a well-formed 
formula is bound or free according as i t  is or is not an occurrence in a well-formed 
part of the formula having the form (XxBM,). The bound variables of a well- 
formed formula are those which have bound occurrences in the formula, and 
the free variables are those which have free occurrences. 

In making metamathematical (syntactical) statements, we shall use bold 
capital letters as variables for well-formed formulas, and bold small letters as 
variables for variables, employing subscripts to denote the type-as in the 
preceding paragraph. Moreover we shall adopt the customary, self-explanatory, 
usage, according to which symbols belonging to the formal language serve in 

6 M .  Schonfinkel, # b e ~  die Bausteine der mathematischen Logik,Mathematische Annalen, 
vol. 92 (1924), pp. 305-316. 
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the syntax language (English) as names for themselves, and juxtaposition 
serves to denote juxtaposition. 

In writing well-formed formulas we shall often enlploy various conventions 
of abbreviation. i n  particular, we may omit parentheses ( ) when possible 
without ambiguity, using the convention in restoring omitted parentheses that 
the formula must be well-formed and that otherwise association is to the left. 
Thus, for instance, a,~b,,(c,,d,) is an abbreviation for ((a~(,,)(,,))b(,,))(c,,d,)),and 
Xb,,Xc,,(a,~b,,(c,,d,)) is an abbreviation for (Xb,,(Xc,,((a((,,,(,,))b(,,))(c,,d,)))). 

As indicated in the examples just given, type-symbol subscripts may be ab- 
breviated in the way described in $1. When the subscript is o it may be omitted 
altogether: thus a small italic letter without subscript is to be read as having 
the subscript o. 

We introduce further the following conventions of abbreviation (reading the 
axrow aa "stands for," or "is an abbreviation for") : 

[-Ao] -+ NOOAO. 
[ A0v Bol --,A ,  A, B,. 
[A. Bol [-[[-Aol~[- BolII.--+ 

[AoIBol-+ [[--AolvBol. 
[Ao= Bol -+ [ ~ A o ~ B o l [ B o ~ A o l l .  
[(~a)Aol n o ( o a )  (XxaAo).-+ 

[(3xa)Aol [-[(xa~[-AolIl.-+ 

[(v~a)Ao]4 La(oa)  (Xxa Ao). 
Qoaa + baXya[( joa)[ j o a s a  2 joayall. 
[Aa= Ba] -+ QoaaAaBa-
[Aa# B.1--+ [-[Aa= Ball. 
Iaa-+ Xzaza. 
Kapa -+ baXy~za. 
Oa' -+ X.faaXz&a, 
la1 -+ Afaaba( jada), 
2at --+ XjaaXsa(jaa(ja&a)), 
3al -+ xf,aba(jaa(faa(fa&a))), etc. 
8a*a*+ Xna*X jaaX~a( jaa (na l j a&a ) ) .  
Noat -+ Xna~[(joa*)[joa~Oa~[[(sa*)[joalsal3joa~(sa~a~za~)Il2 3 joa~na~]]]. 

wa**a*al-+ Xya1Xza.X jala*XgalXhaaXsa(ya*( 
jaealgalhaa) (za*(~a*haa)sa))- 
< Aae1 Bat> --+ w ~ Bat. ~ ~ ~ ~ ~ ~ A ~ 
Pata1tt4 Xnal~t(na~~~(Xpa~~<Sa~a~(pa~~(Ka~a~a~Ia~)Oa~), 

Oa~>(Ka~a~a~Oa~)Ia t .  
Tat,,* -+ X ~ a * [ ( , ~ a ~ * ) [ ( N o a ~ ~ ~ a * * ) [ ~ a ~ ~ S a ~ ~ ~ O a ~= x~I]]] .  

Pata,+ X X ~ ~ ( P ~ * ~ * * * ( T ~ * * ~ ~ ~ ~ ( T ~ ~ ~ ~ * X ~ * ) ) ) .  


As a further abbreviation, we omit square brackets [ ] introduced by the above 
abbreviations, when possible without ambiguity. When, in omitting square 
brackets, the initial bracket is replaced by a bold dot ., it is to be understood 
that the scope of the omitted pair of brackets is from the dot forward the maxi- 
mum distance which is consistent with the whole expression's being well-formed 
or interpretable as an abbreviation of a well-formed formula. When omitted 



~ ~ ~ w ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o . ~ ~ ~ ~ ~ ~ - ~ ~ ~ - ~ ~ w ~ . ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ 

A FORMULATION OF THE SIMPLE THEORY OF TYPES 59 

brackets are not thus replaced by a dot, the convention in restoring omitted 
brackets is association to the left, except as modified by the understanding that 
the abbreviated formulas are well-formed and by the following relation of 
precedence among the different kinds of brackets. 'The brackets in [-AO] and 
[A,B,] are of lowest rank, those in [(x,)A,]  and [ ( 3 x a ) A , ]and [ ( ,xu)  A.] and 
[Aa=  Ba] and [Aa#  Bal are of next higher rank, those in [A,vB,] are of next 
higher rank, and those in [ A , X B , ] and [Ao= B,] are of highest rank; in restoring 
omitted brackets (not represented by a dot), those of lower rank are to be put 
in before those of higher rank, so bhat the smaller scope is allotted to those of 
lower rank. For example, 

is an abbreviation for 

~ ~ [ - - ~ l ~ ~ l ~ [ i ~ ~ q l v [ ~ ~ l l ~ l - - ~ [ ~ ~ l ~ [ [ - ~ l ~ - ~ l l l l l l ~  


which is in turn an abbreviation for 

~ ~ ~ ~ ~ ~ o o ~ ~ ~ o ~ ~ ~ 

(Nw((Aow(Nwr0))(Noose)))))) 
(Noo((Awo(~oo((-~oooqo)~o)))(N,,i(Ao00~~ooN~)(Nw(Nw~o))~))))). 


In the intended interpretation of the forrnai system X will have the r81e of 
an abstraction operator, No. will denote negation, A,,, will denote disjunction, 
no,,,,will denote the universal quantifier (as a propositional function of proposi- 
tional functions), I , ( , , ,  will denote a selection operator (as a function of proposi- 
tional functions), and juxtaposition, between parentheses, will denote applica- 
tion of a function to its argument. Such a logical construction of the natural 
numbers in each type a' is intended that Om#will denote the natural number 0, 
1 , .  will denote 1 ,  2,t will denote 2, etc. Then Sa., ,  will denote the successor 
function of natural numbers; or, more exactly, it will denote a function which 
has the entire type a' as the range of its argument and which operates as a suc- 
cessor function in the case that the argument is a natural number. Moreover, 
Noatwill denote the propositional function "to be a natural number (of type 
a')." If Nalt denotes a natural number of type a", then Na, tSa ta~Oa~denotes 
the same (more exactly, the corresponding) natural number in the type a'. 
Hence if Nut denotes a natural number of type a', the same natural number in 
the type a" will be denoted by Tatta,NaI. The formula Pala# , ,is adapted from 
Kleene's formula P employed in the calculus of A-conversion7 and has the 
property that if NaJlldenotes a natural number of type a"' then P a ~ , ~ ~ , N a t 1 ~  
denotes the predecessor of that natural number in the type a'. The true pred- 
ecessor function, which gives the predecessor in the same type, is denoted by 
P a t , , ;it follows from the independence of the axiom of infinity ($4) that this 
predecessor function cannot be defined without using descriptions (i.e,, the 
selection operator reioa,). 

S. C .  Kleene, A lheory of positive integers i n  formal logic, American journal of muthemat-
ics, vol. 57 (1935), pp. 153-173, 219-244. 
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3. Rules of inference. The rules of inference (or rules of procedure) are the 
six following: 

I. T o  replace a n y  part M a  of a formula by  the result of substituting yp for xa 
throughout Ma,  provided that xg i s  not a jree variable of M a  and yg does not occur 
in Ma. (I.e., to infer from a given formula the formula obtained by this 
replacement.) 

11. T o  replace a n y  part ((XxgM,)Ng) of a jormula by  the result of substituting 
Ngfor xg throughout Ma,  provided that the bound variables of M a  are distinct both 
from xg and jrom the jree variables of Ng. 

111. Where A, i s  the result of substituting Ng for xg throughout Ma, to replace 
a n y  part A, of a formula by  ((AxgM,)Ng), provided that the bound variables of 
M a  arp distinct both jrom xg and jrom the free variables of Ng. 

IV. From F.,x, to injer  F,,A,, provided that x, i s  not a jree variable of F,,. 
V. From A , 3  B, and A,, to in fer  B,. 
VI. From F,,x, to injer  rI,~,,,F,,, provtded that x, i s  not a jree variable of F,,. 

The word part of a formula is to be understood here as meaning consecutive 
well-formed part other than a variable immediately following an occurrence of 
A. Moreover, as already explained, bold capital letters represent well-formed 
formulas and bold small letters represent variables, the subscript in each case 
showing the type. When (as in the rules I, 11, 111) we speak of replacing a part 
M a  of a formula by something else, it is to be understood that, if there are 
several occurrences of M a  as a part of the formula, any one of them may be so 
replaced. When we speak of the result of substituting Ng for xg throughout 
Ma,  the case is not excluded that xg fails to occur in Ma,the result of the sub- 
titution in that case being Ma.  

The rules 1-111 are called rules of A-conversion, and any chain of applications 
of these rules is called a A-conversion, or briefly, a conversion. Rule IV is the 
rule of substitution, Rule V is the rule of modus  ponens, and Rule VI is the rule 
of generalization. In an application of Rule IV,  we say that the variable x, 
is substituted for; and in an applicatioil of Rule VI, we say that the variable 
x, is generalized upon .  

The two following rules of inference are derived rules, in the sense that the 
indicated inference can be accomplished in each case by a chain of applications 
of I-VI (the effect of IV' can be obtained by means of A-conversion and Rule 
IV, the effect of VI '  can be obtained by means of A-conversion and Rule VI): 

IV'. From M, to infer the result of substituting A ,  for the jree occurrences of 
x, throughout M., provided that the bound variables of Moother than x, are distinct 
from the jree variables of A,. 

VI'. From M, to injer  (x,)M.. 

4. Formal axioms. The formal axionis are the formulas in the following 
infinite list: 
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The theorems of the system are the formulas obtainable from the formal axioms 
by a succession of applications of the rules of inference. A proof of a theorem 
of the system is a finite sequence of formulas, the last of which is the theorem, 
and each of which is either a formal axiom or obtainable from preceding formulas 
in the sequence by an application of a rule of inference. 

We must, of course, distinguish between formal theorems, or theorems of the 
system, and syntactical theorems, or theorems about the system, this and related 
distinctions being a necessary part of the process of using a known language 
(English) to set up another (more exact) language. (We deliberately use the 
word "theorem" ambiguously, sometimes for a proposition and sometimes for 
a sentence or formula meaning the proposition in some language.) 

Axioms 1 4  suffice for the propositional calculus and Axioms 1-6" for the 
logical functional calculus. 

In order to obtain elementary number theory it is necessary to add (to 1-6") 
Axioms 7, 8, and 9". Of these, 9" are axioms of descriptions, and 7 and 8 taken 
together have the effect of an axiom of infinity. The independence of Axiom 7 
may be established hy considering an interpretation of the primitive symbols 
according to which there is exactly one individual, and that of Axiom 8 by con- 
sidering an inttrpretation according to which there are a finite number, more 
than one, of individuals. 

In order to obt,ain classicai real number theory (analysis) it is necessarys to  
add also Axioms 10"' and 11". Of these, 10"' are axioms of extensionality 
for functions, and 11" are axioms of choice. 

Axioms 10"*, although weaker in some directions than axioms of extensionality 
which are sometimes employed, are nevertheless adequate. For classes may be 
introduced in such a way th2t the class associated with the propositional function 
denoted by F,, is denoted by hx,(ly,,) . (Foax,)[y,~=O,l] v (--F,,x,)[y,~= I,#].  
We remark, however, or! the possibility of introducing the additional axiom of 
extensionality, p=q 3 p =q,  which has the effect of imposing so broad a criterion 
of identity between propositions that  there are in consequence only two proposi- 
tions, and which, in conjunction with loa8, makes possible the identification of 
classes with propositional functions. 

Axioms 9" obviously fail to be independent of 1-4 and 11". We have never- 

"Ieviccs of contextual definition, such as Russell's methods of introducing classes and 
descriptions (loc. cit .) ,  are here avoided, and assertions concerning the necessity of axioms 
and the like are to be understood in the sense of this avoidance. 
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theless included the axioms 9" because of the desirability of considering the 
consequences of Axioms 1-9" without loa8,11". 

If 1-9" are the only formal axioms, each of the axioms 9" is then independent, 
but if 10" is added there is a sense in which those other than 9" and 9', although 
independent, are superfluous. For, of the symbols racoa) ,  we may introduce only 
lo(,) and L,,,,) as primitive symbols and then introduce the remainder by defini- 
tion (i.e., by conventions of abbreviation) in such a way that the formulas gal 
read in accordance with these definitions (conventions of abbreviation), become 
theorems provable from the formal axioms 1-8, go, 9', loa*. The required 
definitions are summarized in the following schema, which states the definition 
of ~ ~ o ( ~ ( ~ o ) )  L , ( o , ) :in terms of 

5. The deduction theorem. Derivation of the formal theorems of the proposi- 
tional calculus from Axioms 1-4 by means of Rules IV' and V is well known and 
need not be repeated here.' In what follows we shall employ theorems of the 
propositional calculus as needed, assuming the proof as known. 

I t  is also clear that, by means of Rules I and IV', alphabetical changes of the 
variables (free and bound) may be made in any formal axiom, provided that 
the types of the variables are not altered, that variables originally the same 
remain the same, and that variables originally different remain different. For-
mal theorems obtained in this way (including the formal axioms themselves) 
will be called variants of the axioms and will be employed as needed without 
explicit statement of the proof. 

By a proof of a formula B, on the assumption of the formulas A:, A:, . . . , A,", 
we shall mean a finite sequence of formulas, the last of which is B,, and each of 
which is either one of the formulas A:, A:, . . ., A,", or a variant of a formal 
axiom, or obtainable from preceding formulas in the sequence by an application 
of a rule of inference subject to the condition that no variable shall be substituted 
for or generalized upon which appears as a free variable in any of the formulas 
A:, A:, . . .,A,". In order to express that  there is a proof of B, on the assumption 
of A,', A:, .. ., A,", we shall employ the (syntactical) notation: 

A,', A:, . - . , A," 1B,. 

In the use of this notation, it is not excluded that n should be 0 and the set of 
formulas A: vacuous; i.e., the notation kB, will be used to mean that B, is a 
(formal) theorem. (This use of the sign 1 must be distinguished from the 
entirely different use of the assertion sign by Russell and earlier by Frege.) 

The following syntactical theorem is known as the deduction theorem: 

VII. If A:, A:, . . ., A," B,, then A:, A:, . . ., A,"-' k A," 3B, (n = 
1, 2, 3, . . ,). 

In  order to prove this, we suppose that the finite sequence of formulas B,', 
B:, . . . , By is a proof of B, on the assumption of A,', A:, . . - ,A,", the formula 

O Cf. Hilbert and hckcrmann, loc. c i t . ;  P. Bernays, Aziomatische Unlersuchung des 
Aussagen-Kalkuls  der "Prancipia Mathematica," Mafhematische Zeitschrifl, vol. 25 (1926), 
pp. 305-320. 
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Bornbeing the same as B., and we show in succession, for each value of i from 1 
to m, that 

This is done by cases, according as B: is A,", is one of A:, A:, . . .,A,"-', is a variant 
of an axiom, or is obtained from a preceding formula or pair of formulas by one 
of the rules I-VI. If B: from p 3 p  by IV'. is A,", we may obtain A," 3 ~ :  If 
B: is one of A,', A:, . . . , A,"-' or is a variant of an axiom, we may obtain A: 3B: 
from p 3 . q 3 p  by a succession of applications of IV' and V. If B: is obtained 
from x (a <i)by one of the rules I,  I I , I l I ,  we may obtain A," 2B: from A: 3% 
by the same rule. If B: is obtained from B," (a<i )  by Rule IV, we may obtain 
A,"3Bi from A," 3B: by IV'. If Bi is obtained from E and ~ , b(a<i ,  b < i )  by 
Rule V, we may obtain A," 3B: from A," 3 E  and A," 3~ , band p 3 [ q 3 r ] 3 .  
p 3 q I . p I r  by a succession of applications of IV' and V. If B: is obtained 
from x (a<i )  by Rule VI, we may obtain A , " ~ B :  from A,"3x and 6" by a 
succession of applications of IV', V, and VI'. 

Proof of the following theorem^,'^ which are consequences of the formal axioms 
1-6", is left to the reader (it will be found convenient in most cases to abbreviate 
the proof by employing the deduction theorem in the r81e of a derived rule): 

The following theorems are consequences of the formal axioms 1 4  and loa8 
(no use will be made of them below because we shall be concerned entirely with 
consequences of 1-9") : 

6. Peano's postulates for arithmetic. Three of the five Peano postulates for 
arithmetic" are represented by the following formal theorems: 

lo The same device of typical ambiguity which was employed in stating the rules of 
inference and forniul axioms now serves us, not only to condense the statement of an 
infinite number of theorems (differing only in the type subscripts of the proper symbols 
which appear) into a single schema of theorems, but also to  condense the proof of the 
infinite number of theorems into a single schenla of proof. Of course, in the explicit formal 
development of the system, a stage would never be reached a t  which all of the theorems 
lzO,12', 12", . . . (for example) had been proved, but by the device of a schema of proof 
with typical ambiguity we obtain metamathematical assurance that  any required one of 
the theorems in t,he infinite list can be proved. Cf. the Prefatory Statement to  the second 
volume of PrinciBia mathematica. 

G. Peano, Sul concello di numero, Rivisla di matematica, vol. 1 (1891), pp. 87-102, 
256-267. 
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These theorems are consequences of 1-6"; proofs are left to the reader. 
From 24" and the deduction theorem we obtain the following syntactical 

theorem which we shall call the induction theorem: 

VIII. If xaf is not a free variable of A:, A:, . ., A:, Fa,*, if A:, A:, . ..,A: I-
Foa,Oan,and if A:, A:, . . -,A:, then A:, A:, ...,N,,~x,J, Foa*xa, F F,,*(S,~,*X~~), 
A: F N,,)xa~ 3 F O a ~ x a ~ .  

A proof which is or can be abbreviated by employing the induction theorem 
in the r61e of a derived rule will be called a proof by (mathematical, or complete) 
induction on the variable x,~. 

Another of the Peano postulates is represented by the following formal 
theorems: 

These theorems are consequences of 1-6" and 7, as we shall show (for certain 
types a they are consequences of 1-6" only). 

The remaining Peano postulate would correspond to the following: 

These formulas are demonstrably not theorems (consistency assumed) in the 
case of type symbols a consisting entirely of 0's with no L'S. We shall show that 
the formulas 26') 26", 26"', . . . are theorems-in fact they are consequences of 
1-6" and 8, the formula 26' being the same as 8. 

A proof of the theorem, 

may be made as follows. In 17" substitute pv-p for x., and -.pv-p for yo 
and Xr-.pv-p3-r for fool by successive applications of IV', and then apply 
Rule I1 twice, so obtaining 

[pv-p]= [-.pv-p] 3. [- .pv-p 3-.pv-p] 3-.pv-p 3 --.pv-p. 

Hence using the theorems of the propositional crtlculus, - .pv-p 2 -.pv-p, 

and the rules IV' and V, obtain 

[pv-p]= [-.pv-p] 3 - .pv-p 3 --.pv-p. 

Hence, using the theorems of the propositional calculus, 

pv-p 3--.pv-p, 
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and IV' and V (method of reductio ad absurdum), obtain 

Hence by two successive uses of 13') with I, 11,111,IV', V, obtain 27". 
In regard to proof of the theorems, 

since we have a proof of 27', and 27' is Axiom 7, i t  is sufficient to show how to 
obtain a proof of 27"'if a proof of 27" is given. 

BY conversion za# ta k K a ~ a ~ a ~ g ~Ka8ataxg. 
Hence by 17" (using 11,IV', V), Za#ta, Ka8a~a=Ka8atak Ka8ata~,q#KoBa~a~8. 
Hence by the deduction theorem, za#ta t- Ka8,,za=Ka8,ta 3 K a 8 a t ~ 8 #  

Kapataxa-
By 16" (using IV'), K a ~ a t a ~ 8 =KagataX8. 
Hence by reductio ad absurdum, as above, za# t, Kdaza#KoBata. 
Hence by two successive uses of 13"' (with I, 11, 111, IV', V), zaf t, t-

(3xa8)(3~a@)xa@#Ya@. 
Hence by the deduction theorem, za#ta 3 (32a8)(3ya8) .x4#ycr8. 
Hence using VI', I- (t,) .za#ta 3 (3xa8)(3ya8).x@#ya8. 
Hence by 15" (using I,  11, 111, IV', V), (3ta)[z,#ta] 3 (3x4)(3y4). 

x a ~ fyap. 
Hence using VI', (2,) . (3ta)[Za#ta] 3 (3xab)(3ya8) .~ a 8 fya8. 
Hence by 15" (using I, 11,111,IV', V), 1- (3za)(3ta)[za#ta] 3 (3x4)(3yaa) . 

a' f .Y ~ B .  
Hence if b27" then, using I and V, ~ 2 7 " ~ .  
Thus for every type a we have a proof of 27". Using this, we proceed to 

the proof of 

By conversion, za#ta Sa~a~xa~(Kaa~a)ta#Oa~(Kaa~a)ta.Hence by the 
method illustrated in the preceding proof, using in order 17") the deduction 
theorem, 16", and reductio ad absurdum, z, # t ,  t- Salafxal#Oat. Eliminating 
the assumption za#ta by the method of the preceding proof, using in order the 
deduction theorem, VI', 15", VI', 15", 27", we have t-28". 

Having 28", we prove 25" by using p 3 . q 3 p .  
We need also the theorems: 

The (schema of) proof of these theorems is a simple example of proof by 
induction. 

From 22" by conversion, k N o a ~ ( O a ~ ~ S a ~ a ~ O a ~ ) .  
By 23", N ~ a l ( n a l t S a l a ~ O a ~ )k N o a ~ ( S a ~ a ~ ( n a ~ ~ S a ~ a ~ 0 a ~ ) ) ~  

Hence by conversion, N o a ~ ( n a ~ ~ S a ~ a ~ O a ~ )N o a ~ ( S a * * a ~ ~ n a * ~ S a ~ a ~ O a ~ ) .  

Hence by the induction theorem, taking F,.II to  be hxa~t(NOa~(x.~~S.~.~O.~)) 
and xu, ,  to be n,,,, and employing conversion as required, we have k29". 
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Returning now to 26', we consider in connection with it: 

As in the case of 26", not all the formulas 30" are theorems. We shall show that 
26" and 30" are theorems if CY is one of the types r ,  L', c", . . .. Since 26' is Axiom 
8, we may do this by showing that (1) if k26" then 130a, and (2) if F26" 
and F30a then ~26a'.12 

By 18a'a"J sa,,a,,ra,,=sa,ta,tyat, 1saltatt~a,tsa,a,oat=s a ~ ~ a ~ ~ ~ a ~ ~ S a ~ a @ a ~ .  
Hence by conversion, we have S a ~ ~ , ~ ~ z a ~ ~=S a ~ ~ . t ~ y a ~ ~F Sal, ~ ( z , ~ ~ S a ~ , ~ O a ~ )= 

Sa~a~(ya~~Sa~a~Oa~)e  
Hence if F26", we have by 29") N o a ~ ~ ~ a ~ ~ lN o a ~ ~ y a ~ ~ JS a ~ ~ a ~ ~ r a ~ ~ = S a ~ ~ a ~ ~ y a ~ ~F 

~ ~ t , S ~ t ~ t O ~ l= ~ a ~ ~ S a ~ a ~ O a ~ .  

Hence if k26" and k30a, we have N o a ~ ~ ~ a ~ ~ ~N o a ~ ~ y a ~ ~ JS a ~ ~ a ~ ~ r a ~ ~ = S a ~ ~ a ~ ~ y a ~ ~  
k xatt=y',((. 

Hence by three applications of the deduction theorem, if k26" and k30a 
then ~26" ' .  This is (2) above. 

Now by conversion, Oa~~Sa,.tOat= O a ~ t S a t a ~ O a ~k Oat =Oat. Hence by the de-
duction theorem, k O a ~ ~ S a ~ . ~ O a ~= O a ~ ~ S a ~ a ~ O a ~3 0.1 =oat. 

By conversion, Oa~~Sa~a~Oa~=Sa~~a~~na~~Sa~a~Oa~k Oa~=Sa~a~(na~~Sa~a~Oa~).
Hence by 19"', O a t ~ S a l a l O a l=SallallnallSa~a~OalF S a ~ a ~ ( n a l l S a l a l ~ a l )=oat. By 
2Sa, k Sata~(na~tSata~Oa~)#Oa,.Hence, using p-p3q, we have O,IIS,I,IO.I= 
Sa.,attna,,Sata,Oa Oa~~=Sat ta t tna l l .Hence by the deduction theorem, 
k Oa,,Sa,a,Oa,= 30.11 =S a ~ ~ . ~ ~ n a .  

Hence by the induction theorem, followed by VI', k (net#).N o a ~ ~ n a ~ ~3 -
Oa,,Sa,a,Oa, =nattSa,.tOa# 30.11 =n.11. 

By conversion, S a ~ ~ a ~ ~ m a ~ ~ S a ~ a ~ O a ~= O a ~ ~ S a ~ a ~ O a ~k S a ~ a ~ ( m a ~ ~ S a ~ a ~ O a ~ ) = O a ~ .  

By 28") 1 Sata~(mallSa~a~Oat)#Oal. Hence, using p-p3q, we have 
Sa,,a,tmattSata,Oat=OattSa,,,Oat k S a l l a ~ l m a ~ l=Oat!. Hence by the deduction 
theorem, k S a ~ ~ a ~ t m a ~ ~ S a ~ a ~ O a ~ = O a ~ l S a ~ a ~ O a ~3 S a ~ ~ a ~ ~ m a l l = O a l l .  

By conversion, S a t ~ a ~ ~ m a ~ ~ S a ~ a t O a ~=S a ~ ~ a ~ ~ n a ~ ~ S a l a l O a lk S a ~ a f ( m a ~ ~ S a ~ a ~ O a ~ )= 
Sa,at(na,,Sata,Oa,).Hence if F26", we have by 29", Noallma~l,Noa1tna~~, 
a , a , a a a a =  S a a n a a a O a  S O S a a O a Hence if 
k26", we have (using 12""), Noattma~~,(n,!~) . N o a ~ ~ n a ~ ~3 .m a ~ ~ S a ~ a ~ O a ~ =  
nattSa,a,Oa,3 ma,,=natt, Noatmatt, S a ~ ~ a ~ ~ m a ~ ~ S a ~ a ~ O a ~ = S a ~ ~ a ~ ~ n a ~ ~ S a ~ a ~ O a ~k 
ma,,=natt. Hence, using 18"""" to obtain S a ~ ~ a ~ l m a l l=S a ~ ~ , ~ ~ n a t land then 
applying the deduction theorem, we have (if 126"))NOa~~ma~~,(nail) N o a ~ ~ n a ~ ~  
3 . ma,,Sa,,,Oa,=nat,Sata,Oa, 3 mall=nail, Noallnall Sa~ la l lmal l~a la lOa l= 
sattat,nattSatatOat3 ~ a l l a l l m a ~ l=S a ~ ~ a ~ ~ n a ~ ~ .  

Hence by the induction theorem, followed by VI', we have (if k26"), N O a ~ ~ m a ~ ~ ,  

12 The question suggests itself whether 30' could be used in place of Axiom 8 as the 
second part of the axiom of infinity. The writer has a proof (depending on the properties 
of P,,,,,,)that  30' and 30'' are together sufficient, in the presence of 1-6", to  replace Axiom 
8. A proof has also been carried out by A. M. Turing that,  in the presence of 1-7 and 
9", 30' is sufficient alone to  replace Axiom 8. Whether 8 is independent of 1-7 and 30' 
remains an open problem (familiar methods of eliminating descriptions do not apply here). 
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(nut,).Noattnat,3 .ma~~Sa~a~Oal=na,,SatalOa~3m a ~ t = n a ~ tk (nap#).N o a ~ ~ n a ~ t  
3.Sa,,a,tmattSa~a,Oa~=na~tSatatO.t3 S,,.,,I~.I~ =nut#. 

Hence again, applying the induction theorem to preceding results, we have 
3 .~ , ~ ~ S , ~ , I O , ~ = ~ , ~ I S , ~ ~ ~ O ~ ~(if k26"), t NOat,rnat~3 . (null) .N o a ~ ~ n a ~ ~  3 

mat,=n.t~. 
Henceusing V and 12"", we have (if 126"), N O a ~ ~ r n a ~ ~ ,  k m a ~ ~ S a ~ a ~ O m ~N O a ~ ~ n a ~ ~  

=na,,SatatO,. 3mat,=n.~t. 
Hence by two applications of the deduction theorem, if 126" then k30". 

This is (1) above. 

7. Properties of T,II.I. We proceed now to proofs of the following theorems: 

The proofs require 9"" and are possible only for types a for which there is a 
proof of 30". 

We begin by proving as a lemma: 

Proof of this requires only the axioms 1-6" and is possible for an arbitrary type a. 
By 18", using IV' and conversion, we have I- O.IIS,I.IO.I =0.1. Hence using 

22"' and p 3 . q 3 p q  and 13"", we have k (3xa~t).No,la,ll .x,~~SatatO,t=0,t. 
By 18"'"', x a l ~ S , ~ , ~ O a ~  I- S a ~ a l ( x a l l S a ~ a ~ O a ~ )S,I,~X,I.Hence by con- =sat = 

version, x , ~ ~ S , ~ , ~ O , ~ = x , ~S,~~,flxallSa~,~Oa~=Sa~a~xa~.by 23"',k Also, 
N O a l t ~ a ~ ~  Hence using p q 3 p  and pq3q and p3.q3pq,  k N O a I I ( S a ~ ~ . ~ ~ x a ~ ~ ) .  
we have N.,~~x,II . x , ~ ~ S , ~ , ~ O , ~ = x , ~  . Sa~f,flx,llSa~alO,~=I- Noall(S, l lal lxa~~) 
Satatxal.  Hence employing in order 13"", the deduction theorem, and VI', 
we have (xafl).[Noa~~x ,~ ,  3 ( I x , ~ ~ )  .~ ~ t ~ S ~ ~ ~ ~ 0 . t.z , ~ ~ S , ~ , ~ O a t = z , ~ ]  .N O a ~ ~ x a ~ ~  
S a x Hence by 15"", I- ( 3 x a l ~ ) [ N o a l ~ x a ~ ~  3 (3xalI)..xal~Sa~, lOaf=z ,~]  
N O a * , ~ a ~ ~. 

Hence by the induction theorem, 133". 
Now proceeding with the proof of 31" and 32" (for types a for which t-303, 

we may-with the aid of 30"-show .x a ~ ~ S a ~ a l O a ~ = z a l ,  .that No,~txat~ Noallyall 
yatISatatOat=x~1- xu*)=YO(*.  

Hence by the deduction theorem and VI', Noat~xaf. I-. x a l l S a l a ~ O a ~ = x , ~  
(yatt) . [NOattyat*.Y . ~ ~ S ~ ~ ~ I O ~ * = X ~ * ]3x ~ ~ ~ = Y ~ ~ ~ .  


Hence by 9"" (refer to the definition of T , ~ ~ . ~ ,  . x,~~S,~,*O,~
#2), N o a ~ * ~ a ~ ~  
=xu* t- NOa , , (Ta~*af~a I ). T a ~ ~ a ~ ~ a ~ S a ~ a ~ O a ~ = ~ a ~ .  

Ilence employing in order the deduction theorem, VI', and 15"", we have 
I- ( J X ~ , , ) [ N ~ . , , Z ~ ~ ~  =x,*] 3 . N. ,~~(T ,~~ ,~X,~). xa*~Sara*Oar . Tat~ar~arSacar~ac 
--Xu!. 

Hence using 33" and p 3 q  2.[q3rs]  3 . ~ 3and p3q2 . [q2 r s ]  3 . ~ 3 5 ,we 
have t31" and I-32". 

A further property of Tallatis contained in the following theorem (if a is a 
type for which there is a proof of 30"): 
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Proof of this depends on using 23"' to proveN.all(Sall,ll(Ta(I(Ialxal))on the assump- 
tion of N.,,x,~, and using 16"' and conversion to prove Sa~~, l l(T,l~alxa~)SalalOa(I 
=Sa~at(T,t~a~~a~S,lalO,t) =Satatsaton the and hence Sa~~a~*(Ta~~a*~a*)Sa~a~Oa* 
assumption of N.,~x,t-then using 30" (with 23", 32") 31"). 

A similar use of 30" leads to a proof of the following (where a is a type for 
which there is a proof of 30"): 

35". T a ~ ~ a ~ O a ~ = O a ~ ~ .  

8. Definition by primitive recursion. The formalization of definition by 
primitive recursion requires that, given formulas A,# and B,t,t,~, we find a 
formula Fat,* such that the following are theorems (where xu# is not a free vari- 
able of A,t, B,~,~,~,  :or Fa*,#) 


F a ~ a ~ O a ~ = 
Aal. 

This may be done by taking Fatal to be the following formula (where xu#, gal l  
are not free variables of A,* or ~,1,*,1):'~ 

The definition of Pata#already given is a particular case and may be used as 
an illustration. The following theorems may be proved in order: 

36". Neatnu,3 A j a a ~ s , ( n a ~ f a ~ , )  (By induction, using 16"', 18"'"',=nut .  
and conversion .) 

37". Noa,ma,3 .Noatnat3 <ma#,n a ~ > ( K a l , l ~ ~ Z , ~ ) O a l = m a l .(By induction 
on nutl using 36".) 

38". Noatmat (By induction 3 . Noatnu,3 <mallnal>(Ka~,l~~Oal)I,~=na~. 
on mat, using 3Ga.) 

39". N,at,tna,t,3 na~l~(Apal~<Sa~a~(pa~~(Ka~a~a~Ia~)Oa~)lp a * ~ ( K a ~ a * a ~ I a ~ ) O a ~ > )  
<oat, a , ( a a a I a ) O a= n a S a a O a S a a O a .  (By induction, using 29", 
37".) 

40". Noa,,.na,,,3 P a , a t t t ( S , t ~ t a ~ ~ l n , ~ ~ ~ )  (By 39", = na~llSal~al~OallSalalOal .  
38", using 294.) 

41". p,.at.tOattt (By 16"' and conversion.) =Oat .  

42". Patatoat (By 41", 35"', 35".) 
=Oa t .  

43". Noatnu,3Pat,,(Sa,atnat)=nut.  (By 4Oal 31a', 31a, 34"', 34", 32"', 32".) 

PRINCETON UNIVERSITY 

18 This schema employs descriptions, through the appearance in i t  of T , ~ ~ ~ . ~ ~and T.,l.#. 
In certain cases a formula Fa,., may be obtained which does not involve descriptions. 
In particular, for addition and multiplication of non-negative integers we may i~sc  the 
definitions due to J. B. Rosser: 

P.,.,., + Xma~Xna~Afa.Aza(ma~faj.,(n.~faj..za)). 

B,.,,,I + Xn~.~Xn.~AJ..(m.~(n.~f..)). 

[A.,+B.,] + s.I.I.,A.~B.~. 

[ A . * x B . ~ ]4 B.~.~ .~A. ,B. , .  
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